Functional
Audio
Stream

Electronic instruments and
audio plug-ins design using Faust

Yann Orlarey, GRAME

BIENNALE COLLEGE - CIMM 2019

What is Faust?

A programming language (DSL) to build electronic music
instruments, audio plugins, signal processing applications, etc.

Computers and programming
languages

What is a computer ?

TAPE
T

T T T
§C‘ode nun"1ber‘ of a‘ Turl

Scanned
symbol

Print Sk, Erase
Left, Right

Control unit

Table of U

tape symbolis blank
tape symbol 50
tape symbol is
tape symbol is X
tape symbolis ¥
etc

Current Current Current

state A: state B: state V:

Write Move Next | Write Move Next Wite Move Next

ymbol tape state |symbol tape state jsymbol tape state
1R A 1 R P PR M
1 R B |0 L K 1L N
X R C | E R H X N o
1L D | E N U 0 R P
1L E 1 R S Y R H

What is a computer ?

m A computer is (a finite approximation of) a Universal Turing
Machine.

m If we don't take into account speed and memory size, past,

present and future computers (including quantum computers)
are all equivalent!

What is computer programming ?

m The purpose of Computer Programming is to teach a
universal machine how to behave.

m A Programming Language is a vocabulary and set of
grammatical rules used to describe such behaviors.

m The oldest programming language is FORTRAN (FORmula
TRANSslation), designed 1957 by John Backus. FORTRAN is
still used today for scientific computing and HPC.

Music Programming Languages

Some Music Languages

m 4CED

= Adagio

= AML

= AMPLE
= Antescofo
m Arctic

= Autoklang
= Bang

m Canon

m CHANT
m Chuck

n CLCE

n CMIX

m Cmusic

= CMUSIC

m Common Lisp
Music

m Common
Music

u Common
Music
Notation

= Csound

m CyberBand

DARMS
DCMP
DMIX
Elody
EsAC
Euterpea

Extempore

Flavors Band
Fluxus
FOIL
FORMES
FORMULA
Fugue
Gibber
GROOVE
GUIDO
HARP
Haskore
HMSL

INV
invokator
KERN

Kronos

Kyma
LOCO
LPC

Mars
MASC
Max
MidiLisp
MidiLogo
MODE
MOM
Moxc
MSX
MUS10
MUS8
MUSCMP
MuseData
MusES
MUSIC 10
MUSIC 11
MUSIC 360
MUSIC 4B
MUSIC 4BF
MUSIC 4F
MUSIC 6

McL
MUSIC 111/IV/V

MusicLogo
Music1000
MUSIC7
Musictex
MUSIGOL
MusicXML
Musixtex
NIFF
NOTELIST
Nyquist
OPAL
OpenMusic
Organuml
Outperform
Overtone
PE
Patchwork
PILE

Pla
PLACOMP
PLAY1

PLAY2
PMX
POCO
POD6
POD7
PROD

Puredata
PWGL
Ravel
SALIERI
SCORE
ScoreFile
SCRIPT
SIREN
SMDL
SMOKE
SOuUL
SSSP
ST

Supercollider

Symbolic Composer
Tidal

Digital Sound Synthesis
First Languages, Music Ill1/IV/V

ins
osc
adn
osc
adn
osc
osc
out

FM synthesis coded in CMusic

1960 : Music Il introduces the concept of Unit Generators

1963 : Music IV, a port of Music Il using a macro assembler

1968 : Music V written in Fortran (inner loops of UG in
assembler)

0 FM;

bl
bl
bl
bl
b2
bl
bl;

P9
bl
bl
bl
p5
b2

pl0 £2 d;
p38;
p7 f1 4;
p6;
pl0 £3 d;
bl f1 4d;

Deviation Dviation Modulating _Carrer
Gain Ouration ~ Offset Frequency ~ Frequency
p10 e o7 58

Csound

Originally developed by Barry Vercoe in 1985, Csound is today "a
sound design, music synthesis and signal processing system,
providing facilities for composition and performance over a wide
range of platforms.” (see http://www.csounds.com)

instr 2

al oscil p4, p5,
out al
endin

Example of Csound instrument

1

; p4=amp
; pS5=freq

f1

;ins strt dur

i2
i2
i2
i2
i2

e

0

0

[SR

.5

.5

4096 10 1

1

1
1
1
1

amp (p4)
2000
4000

Example of Csound score

; sine wave

freq(p5)
880

440

220

110

55

http://www.csounds.com

Supercollider

SuperCollider (John McCartney, 1996) is an open source
environment and programming language for real time audio
synthesis and algorithmic composition. It provides an interpreted
object-oriented language which functions as a network client to a
state of the art, realtime sound synthesis server. (see
http://supercollider.sourceforge.net/)

|1 demo-yann (~/Documents/Publications/20130702-MusicDSL/demo/2-Supercollider) - SuperCollider IDE
demo-yann

© Help browser Home) O @

Home Browse Search Indexes ¥ Help - Table of contents ¥

Help

Help 7]
Dc ion home.
SuperCollider is an environment and programming language for real time audio synthesis
and algorithmic composition. It provides an interpreted object-oriented language which
functions as a network client to a state of the art, realtime sound synthesis server.

NOTE: News in SuperCollider version 3.6

Search and browse

Auto Seroll

Interpreter

[YIVS] 0.00% 0.00% Ou 0s 0Og 0d

i

http://supercollider.sourceforge.net/

Max

Max (Miller Puckette, 1987), is visual programming language for
real time audio synthesis and algorithmic composition with
multimedia capabilities. It is named Max in honor of Max
Mathews. It was initially developed at IRCAM. Since 1999 Max
has been developed and commercialized by Cycling74. (see
http://cycling74.com/)

Attack envelope

®d421.132 ¥ 0571
mtof
Modulatar

Oscillator ascillator
frequency

Release envelope

7
_
§ Create amp'hluds envelope |
§ reerscrscescescescrssssssssrasees 4
§

Ve'lomtg scaling of output

41 Audio Dutput,
) | onrare switen

http://cycling74.com/

Puredata

Pure Data (Miller Puckette 1996) is an open source visual
programming language of the Max family. " Pd enables musicians,
visual artists, performers, researchers, and developers to create
software graphically, without writing lines of code”. (see
http://puredata.info/)

=

outlet

outlet~

r $@-read

faust-control 32

s $@-write

outlet~

http://puredata.info/

Elody

Elody (Fober, Letz, Orlarey, 1997) is a music composition
environment developed in Java. The heart of Elody is a visual
functional language derived from lambda-calculus. The languages
expressions are handled through visual constructors and Drag and
Drop actions allowing the user to play in realtime with the
language.

[_lh I -]

OpenMusic

OpenMusic (Agon et al. 1998) is a music composition environment
based on Common Lisp. It introduces a powerful visual syntax to
Lisp and provides composers with a large number of composition
tools and libraries.

Fundzments! From Désintégration
SDBDU’UM partial
umbers by Tristan Murail
. <
= , s | L 29) e R
AR
.. .. .
(. cee LA
wpatch
amm e
th harm
tesic
The reference il
Tre roter Smﬁgm Time Algebra
ed
it 2
This is just to show the
curve
on-raund oo
Greeee
Out-of-Time .“

Compute the
distordsd ﬂ"‘:DP
spectrum N3 ® 66 6 6 © 6

FEH® 8 i o
i

Faust

Faust (Orlarey et al. 2002) is a programming language that
provides a purely functional approach to signal processing while
offering a high level of performance. FAUST offers a viable and
efficient alternative to C/C++ to develop audio processing
libraries, audio plug-ins or standalone applications.

.

Fichier Edition Affichage Rechercher Outils Documents Aide
& g ouvrir iEnregislrer = & Annuler E Q

mixervoice.dsp ¥

1 // Simple 1-voice mixer with mute button, volume control
2 // and stereo pan

3

4 process = vgroup("voice", mute : amplify : pan);

5

6 mute = #*(1l-checkbox("[3]mute"));

7 amplify = *(vslider("[2]gain"”, @, @, 1, 8.01));

8 pan = _ <t *(p), *(1-p)

9 with {

10 p = nentry("[1]pan[style:knob]", 0.5, 0, 1, 0.1);
11 H

12

Faust v | Largeur des tabulations: 4 « Lig 12, Col 1 INS

ChucK

ChucK (Ge Wang, Perry Cook 2003) is a concurrent, on-the-fly,
audio programming language. It offers a powerful and flexible
programming tool for building and experimenting with complex
audio synthesis programs, and real-time interactive control. (see
http://chuck.cs.princeton.edu)

// make our patch
SinOsc s => dac;

// time-loop, in which the osc’s frequency
// is changed every 100 ms
while (true) {

100::ms => now;

Std.rand2f (30.0, 1000.0) => s.freq;

http://chuck.cs.princeton.edu

Reactable

The Reactable is a tangible programmable synthesizer. It was
conceived in 2003 by Sergi Jorda, Martin Kaltenbrunner, Giinter
Geiger and Marcos Alonso at the Pompeu Fabra University in
Barcelona.

Creative Programming;:
Programming as a mean of Invention

Intensional vs Extensional Descriptions

m Creative Programming exploits the powerful relation between
Intensional Descriptions and Extensional Descriptions.

m Intensional Descriptions are represented by programs.

m Extensional Descriptions result from the execution of these
programs

Cogitare and Intellegere

Execution result

Extensional Description

® COMPUTER

Program

Intensional Description

Overview of Faust

What is Faust used for?

m Faust is used on stage for concerts and artistic productions,
for education and research, for open sources projects and
commercial applications :

m Faust offers end-users a high-level alternative to C to develop
audio applications for a large variety of platforms.

m The role of the Faust compiler is to synthesize the most
efficient implementations for the target language (C, C++,
LLVM, Javascript, etc.).

How is Faust Different ?

m Fully compiled to native code
m Sample level semantics
m Multiple backends: C++, WebAssembly, Rust, etc.

m Code runs on most platforms: from small embedded systems
to web pages, mobile devices, plug-ins, standalone
applications, etc.

file:/Users/yannorlarey/Documents/demo-faust/0-Videos/1-faust-owl-android.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/5.1-MoForte-PowerChord.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/5.2-Geo-Shred.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/2-faust-ros.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/3-Striso.mp4
http://foo-yc20.codeforcode.com

DEMO 1

A very simple example

import ("stdfaust.lib");
process = button("play") : pm.djembe(60,0.3,0.4,1);

https://faust.grame.fr/ide

https://faust.grame.fr/ide

The Design of Faust

Design Choices

m Purely functional approach focused on signal processing (LC)
m Programming by composition (FP, CL)

m A Compiled high-level specification language for end-users

m Well-defined preservable formal semantics

|

Easy deployment

Purely Functional Approach

m Signals are functions: S = time — sample,
m Faust primitives are signal processors: P =S™ — §”,

m Faust composition operations (<: :> : , ~) are binary
functions on signal processors: A =P x P — P,

m User defined functions are higher order functions on signal
processors: U =P" — P,

m A Faust program denotes a signal processor.

Faust Primitives

Generators: S — St Operations: S” — S™

m Arithmetic: +, -, /,...

process = 1; m Comparison: <, <=,!= ..

m Trigonometric: sin, cos,...

Log and Co.: log, exp,...

Min, Max: min, max,...
Selectors: select2,...
Delays and Tables: @,. ..
GUI: button("..."),...

Block-Diagram Algebra

Programming by patching is familiar to musicians :

Block-Diagram Algebra

Today programming by patching is widely used in Visual
Programming Languages like Max/MSP:

[resmar oitzesce,
kop

shttar ghbals oo lergihisice
Ok k]

Figure: Block-diagrams can be a mess

Block-Diagram Algebra

Faust allows structured block-diagrams

zita_rev_fdn(...1, 8, 0.1))))(48000) - -

delayfilters(...1, 8, 0.1))))

-
I
I
|
I
I
| fbdelaylines(8)
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I

9
¢
%

5
%

)
X
)
&

allpass_combs(8) feedbackmatrix(8)

"
&
X

()
XX
EEEEEER

Figure: A complex but structured block-diagram

Block-Diagram Algebra

Faust syntax is based on a block diagram algebra

5 Composition Operators

(A™B) recursive composition (priority 4)
(A,B) parallel composition (priority 3)
(A:B) sequential composition (priority 2)
(A<:B) split composition (priority 1)

(A:>B) merge composition (priority 1)

2 Constants
m ! cut

m _ wire

Block-Diagram Algebra

Parallel Composition

The parallel composition (A, B) is probably the simplest one. It
places the two block-diagrams one on top of the other, without
connections.

- process — -

n

Figure: Example of parallel composition (10, *)

Block-Diagram Algebra

Sequential Composition

The sequential composition (A : B) connects the outputs of A to
the inputs of B. A[0] is connected to [0]B, A[1] is connected to
[1]B, and so on.

Figure: Example of sequential composition ((*,/):+)

Note that the number of outputs of A must be equal to the
number of inputs of B.

Block-Diagram Algebra

Split Composition

The split composition (A <: B) operator is used to distribute A
outputs to B inputs.

Figure: example of split composition ((10,20) <: (+,%,/))

Block-Diagram Algebra

Merge Composition

The merge composition (A :> B) is used to connect several
outputs of A to the same inputs of B.

Figure: example of merge composition ((10,20,30,40) :> *)

Block-Diagram Algebra

Recursive Composition

The recursive composition (A~B) is used to create cycles in the
block-diagram in order to express recursive computations.

1103515245

Figure: example of recursive composition +(12345) ~ *(1103515245)

DEMO 2

A simple echo. ..

process = + ~ (@(delay) : *(feedback))
with {
delay = hslider("Delay[unit:s]", 0.5, 0.01, 1, 0.001)
*(44100) : int;
feedback = hslider ("Feedback[acc:0,1,-10,0,10]",0,0,0.65,0.01)
si.smooth (0.999);

Faust a language designed for
Expressivity, Perfomance,
Deployment and Ubiquity

Expressivity Quest

Language Expressivity

Function Composition

Partial application

Lexical environments as first class citizen
Pattern Matching

Faust programs as components

Local definitions

Language Expressiveness

Fast Fourier Transform

fft(N) = si.cbus(N) : an.c_bit_reverse_shuffle(N) : fftb(N)
with {
fftb (1) —s—
fftb(N) = si.cbus(N)
(fftb(No2)<:(si.cbus(No2), si.cbus(No2))),
(fftb(No2) <: (si.cbus(N):twiddle0dd(N)))
:> si.cbus(N)
with {
No2 = int(N)>>1;
twiddle0dd (N) = par(k,N,si.cmul (cos(w(k)),0-sin(w(k))));
w(k) = 2.0*ma.PIxfloat(k)/float (N);
B

Language Expressiveness

Fast Fourier Transform

fft (1)

— Process — — —

Language Expressiveness

Fast Fourier Transform

££t(2)

‘ i ' \
) viddleOdd(2) / i
J |

Language Expressiveness

Fast Fourier Transform

£f£t(4)

twiddleOdd(2)

=

Language Expressiveness

Fast Fourier Transform

££t(8)

(XXIXXIINX X ;
SR ;
RS ,
UKL :
P00 ”
333// ;

Language Expressiveness

Fast Fourier Transform

fft (16)

Language Expressiveness

Fast Fou

rier Transform

f£t(32)

Language Expressiveness

Fast Fourier Transform

fft (64)

Performance Quest

m Fully compiled to native code
m Sample level semantics
m Specification language

m Automatic parallelization

Fully compiled to native code

Faust code:
process = s <: o+,

Block-diagram:

process ——-—--—-----,

C++ translation:

for (int i = 0; (i < count); i = (i + 1)) {
float fTempO = inputO[il;
float fTempl inputl [i];
outputO[i] fTempO + fTempl;
outputl [il] fTempO - fTempl;

Sample level semantics

Sawtooth signal by step of 0.01:

_ <: _, int : -;

0.01 : (+:decimal)

decimal
process

Block-diagram:

y(t >0) = decimal(y(t—1)-+0.01)

Specification Language
Leave the implementation to the compiler
User's code:
process = _<:(*%(0.5):0(2)),(0(1):x(0.5):@(1)):>_;

Block-diagram:

Equivalent, more efficient code

process = @(2);

Code Generators

Automatic Parallelization

vector code generator
(loop separation)

DA

Automatic Parallelization

Performances

Sonik Cube
Mac Pro 8, Faust 0.9.20, icc 11.1.069

180

& omp
= sch
v scal
& vec

number of cores

performance (MB/s)

Easy Deployment Quest

Easy Deployment

file:/Users/yannorlarey/Documents/demo-faust/0-Videos/1-faust-owl-android.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/5.1-MoForte-PowerChord.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/5.2-Geo-Shred.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/2-faust-ros.mp4
file:/Users/yannorlarey/Documents/demo-faust/0-Videos/3-Striso.mp4
http://foo-yc20.codeforcode.com

Easy Deployment

Separation of concern

The architecture file describes how to connect the audio
computation to the external world

Y
© USER
INTERFACE
e

AUDIO
COMPUTATION

User Interface.
Module

AUDIO
DRIVER
—

Easy Deployment

Examples of supported architectures

m Audio plugins : m Audio drivers :
> AudioUnit > Jack
> LADSPA > Alsa
» DSSI » CoreAudio
> LV2 > Web Audio API
> Max/MSP m Graphic User Interfaces :
> VST > QT
> PD > GTK
> Csound > Android
» Supercollider > i0S
> Pure > HTML5/SVG
: JCSECEI(m Other User Interfaces :
> Unity > MIDI
. » 0OSC
m Devices : » HTTPD
> OWL
» MOD
> BELA

> SAM

Ubiquity:
Compiling Everywhere

Compiling Everywhere
Language Backends

C++

C

Rust

Java
Javascript
Asm js

LLVM
WebAssembly

Compiling Everywhere
Libfaust

m Libfaust: embeddable version of the Faust compiler coupled
with LLVM

m Libfaust.js: embeddable Javascript version of the Faust
compiler

Compiling Everywhere

m Command Line Compilers

» faust command line
> faust2xxx command line
» FaustWorks (IDE)
m Embedded Compilers (libfaust)
» FaustLive (self contained)
Faustgen for Max/MSP
Faust for PD
Faustcompile, etc. for Csound (V. Lazzarini)
Faust4processing
» Antescofo (IRCAM's score follower)

m Web Based Compilers

>
>
>
>

> Faustweb API (https://faustservice.grame.fr)

» Online Development Environment
(https://faust.grame.fr/ide)

» Online Editor (https://faust.grame.fr/editor)

» Faustplayground
(https://faust.grame.fr/faustplyaground)

https://faustservice.grame.fr
https://faust.grame.fr/ide
https://faust.grame.fr/editor
https://faust.grame.fr/faustplyaground

The Faust Ecosystem

https://faust.grame.fr/faustplayground
https://faust.grame.fr/editor
https://faust.grame.fr/onlinecompiler

Additional Resources

Where to learn Faust

International:
m Stanford U./CCRMA
m Maynooth University
m Louisiana State University
m Aalborg University
France:
m Jean Monnet U., Master RIM
m IRCAM, ATIAM
m PARIS 8

Where to learn Faust

Kadenze course

Real-Time Audio Signal Processing in WOULD YOU LIKE TO
Faust ENROLL?

e x93y @

$026
https://www.kadenze.com/courses/real-time-audio-signal-
processing-in-faust/info

https://www.kadenze.com/courses/real-time-audio-signal-processing-in-faust/info
https://www.kadenze.com/courses/real-time-audio-signal-processing-in-faust/info

Where to learn Faust

Faust website

What is Faust? News

https://faust.grame.fr

https://faust.grame.fr

	Block-Diagram Algebra

